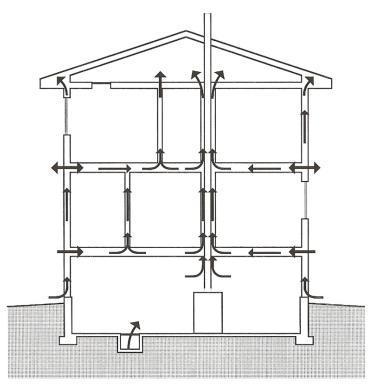

Advanced Building Science

- Infiltration & Ventilation (Air Exchange)
 - Basic concepts & terminology
 - Airflow around buildings
 - Moving towards calculating airflows
- Readings
 - HPE: Chapter 3.2
 - HPE: Appendix B.11 Air Flow Control in Buildings
 - HF: Chapter 24 => OK to "review" modeling

BBE 4414/5414: Advanced Building Science Fundamentals

Infiltration & Ventilation (Air Exchange)

BBE 4414/5414: Advanced Building Science Fundamentals


Infiltration & Ventilation (Air Exchange)

To Have Airflow, You Must Have:

- Hole or path
 - random (leaks)
 - direct
 - indirect
 - intentional openings
- Pressure difference
 - outside pressures
 - airflow around buildings
 - temperatures (stack effect)
 - interior pressures
 - chimneys
 - mechanical systems

BBE 4414/5414: Advanced Building Science Fundamentals

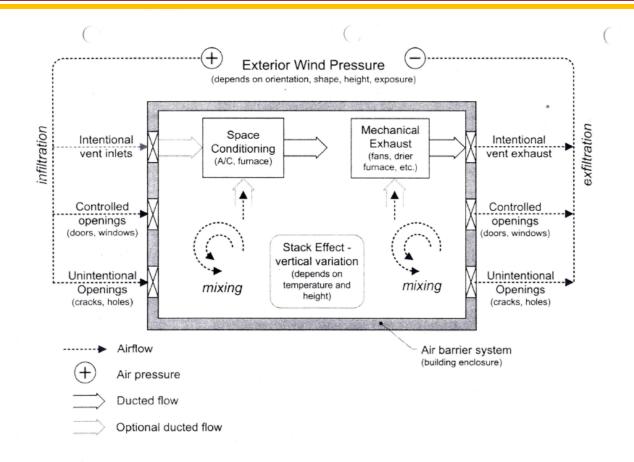
Air Leakage Pathways

Indirect through walls

ATTIC Leak in supply duct connection Supply duct Insulation ROOM SPACE Ceiling Air leakage where duct connects to ceiling register

Indirect through ducts

BBE 4414/5414: Advanced Building Science Fundamentals


Air Flow is Driven by Pressure Differences

- These pressures can be created by natural conditions:
 - wind
 - temperature differences
- And pressures can be created by mechanical equipment:
 - combustion venting
 - exhaust fans
 - exhaust devices
 - supply fans
 - forced air systems

BBE 4414/5414: Advanced Building Science Fundamentals

- Types of Air Exchange
 - Infiltration and exfiltration
 - random leaks; natural forces
 - Ventilation (intentional openings)
 - natural
 - forced
 - other (chimneys & exhaust devices)
- Transfer (or circulation) air
 Within the house

6

Figure 7.1: Examples of airflow processes within buildings and across enclosures

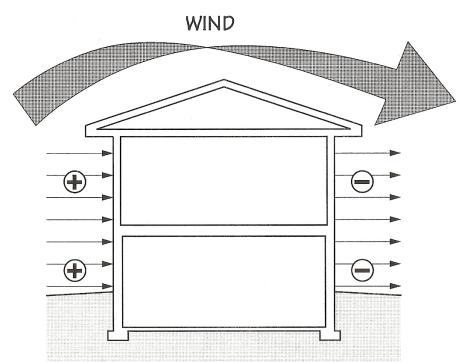
Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 7

Three primary machanisms concrete the pressure differences required for sir to

BBE 4414/5414: Advanced Building Science Fundamentals

Natural Forces

- Wind

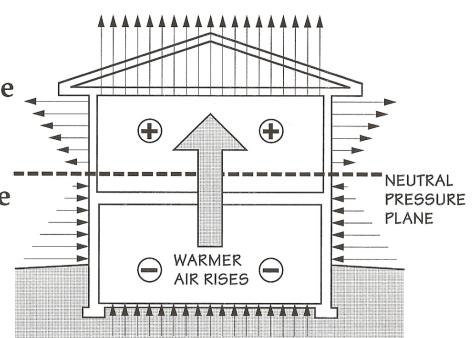

Stack (temperature-induced)

BBE 4414/5414: Advanced Building Science Fundamentals

Wind drives air through openings

(either intentional or unintentional)

- Air is pushed inward on the windward side
- Air is sucked outward on the leeward side



• Flow in = Flow out

BBE 4414/5414: Advanced Building Science Fundamentals

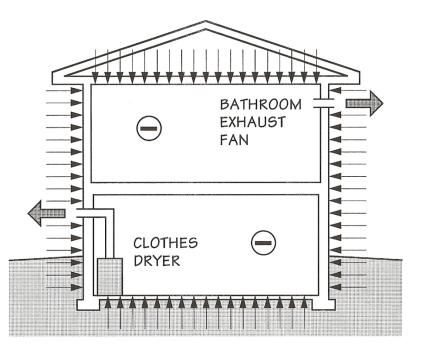
The stack effect


- Positive (outward) pressure is created above the neutral pressure plane
- Negative (inward) pressure is created below the neutral pressure plane
- Outward flow above the plane = Inward flow below the plane

- Mechanical Forces
 - Combustion exhaust
 - Ventilation (exhaust fans)
 - Exhausting devices
 - Supply devices
 - Forced-air systems

Combustion venting (the chimney effect)

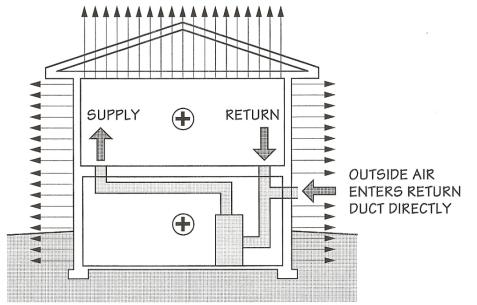
• Negative (inward) pressure is created in the building


BBE 4414/5414: Advanced Building Science Fundamentals

Exhausting Devices

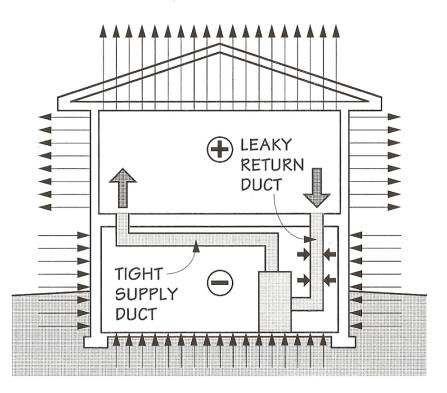
• Clothes dryers also create negative (inward) pressure in the building

Mechanical Ventilation

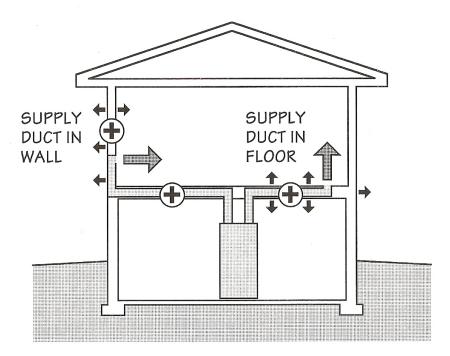

• Bath and kitchen fans create negative (inward) pressure in the building

BBE 4414/5414: Advanced Building Science Fundamentals

Supply devices


 Outside air supply directly connected to the HVAC system creates positive (outward) pressure in the building

BBE 4414/5414: Advanced Building Science Fundamentals


Forced air systems– ducts in basement

 Leaky return ducts cause the basement to be depressurized while the above grade space is pressurized

Forced air systems–supply ducts within walls and floors

• Leaky supply ducts can pressurize cavities causing air leakage

Wind Data

- See Chapter 14 (ASHRAE Handbook Fundamentals 2013) for wind design data
- Hourly vs. Annual
- Frequency distribution

– Vertical wind profile

BBE 4414/5414: Advanced Building Science Fundamentals

- Flow Patterns
 - Building height
 - Building shape
- Zones of Interest
 - Stagnation
 - Recirculation
 - Upwash & downwash
 - Ground conditions

Wind Pressures

- Local pressure coefficients for a tall building
 - with varying wind angle
- Local pressure coefficients for low-rise (walls & roof)

BBE 4414/5414: Advanced Building Science Fundamentals

Effects on System Operation

- Wall openings
- Impact of mechanical ventilation/exhaust
- Building pressure balance

Scale Modeling Simulation and Testing

- Simulation
 - CFD is tedious and very expensive
- Physical modeling
- Field evaluations
- Boundary layer wind tunnel
 - can be expensive, but a great tool

BBE 4414/5414: Advanced Building Science Fundamentals

21

Types of Air Exchange in Buildings

- **1.** Air Infiltration and Exfiltration
 - Random leaks
 - Natural driving forces (wind/temperature)

2. Natural Ventilation

- Intentional openings (windows)
- Natural driving forces (wind/temperature)
- 3. Chimneys
 - Intentional openings (flue)
 - Thermally (or mechanically) driven
- 4. Exhaust Devices
 - Intentional openings (vents)
 - Mechanically driven (fans, etc.)
- 5. Mechanical Ventilation
 - Intentional openings (vents or grills)
 - Mechanically driven (fans, etc.)

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Preview for Next Class

- Air Exchange => All about the Math!
 - Calculating airflows
 - Superposition
 - wind & stack
 - balanced and unbalanced
 - Simplified air exchange models
- Readings
 - HF Chapter 16.1 16.25
 - HF Chapter 24 => OK to "review" modeling