Advanced Building Science

- Design Conditions
 - Interior (based on thermal comfort, etc.)
 - Exterior (based on macro & micro climate)
 - Unconditioned spaces (somewhere in between)

- Readings
 - HF: Chapter 14
 - BSBE: Chapter 3

Design Conditions

- Indoor design conditions
 - physiological principles
 - moisture and humidity
- Outdoor design conditions
 - heating design conditions
 - cooling/dehumidification design conditions
 - mean daily range
- Unconditioned spaces

 predicting temperatures

Design Conditions

Figure 3.2: Environmental conditions and enclosure loadings

Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

BBE 4414/5414: Advanced Building Science Fundamentals

Indoor Design Conditions

- Building Conditioning Types
 - Temperature
 - Humidity
 - Pressure

- Residential
 - Winter temperature: 65 to 70 degrees
 - Summer temperature: 72 to 78 degrees

BBE 4414/5414: Advanced Building Science Fundamentals

Indoor Design Conditions

Туре	Temperature Control	Humidity Control	Pressure Control	Examples	
la	۲			Heated house, warehouse	
۱b	۲	0		Heating and normal A/C	
lc	۲		0	Heating + exhaust fans	
١d	۲	0	0	Heating+ A/C + exhaust fans	
lla	٢	۲		Museum, fruit storage	
ll b	· •	۲	0	Pressurized + controlled	
	٥	۲	۲	Special labs, chip fabrication	
IV	٢			Dust sensitive manufacturing	
v		۲	٢	Special food storage	
VI			٥	Cement factory	
5		an a			

Table 3.4: Types of conditioning for buildings

Note: Directly controlled O - Incidental Implicit

Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

BBE 4414/5414: Advanced Building Science Fundamentals

Exterior Design Conditions

Source: Sraube: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

Figure 3.4: Lstiburek's climate zone classification [Lstiburek 2005]

BBE 4414/5414: Advanced Building Science Fundamentals

Outdoor Design Conditions

Figure 3.11: Temporal variations in weather

Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

BBE 4414/5414: Advanced Building Science Fundamentals

Outdoor Design Conditions

Figure 3.9: Enclosure-specific microclimate

Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

BBE 4414/5414: Advanced Building Science Fundamentals

Outdoor Design Conditions

Weather Data

- Heating design conditions*
 - generally occurs between 6:00 and 8:00 a.m. (suntime)
- Cooling/dehumidification design conditions*
 - generally occurs between 2:00 and 4:00 p.m. (suntime)
- Mean daily range
 - useful for summer cooling
- Heating degree days
 - useful for energy estimating
 - sometimes used in below grade approximations
 - * Used to be winter/summer percentiles, now annual percentiles

BBE 4414/5414: Advanced Building Science Fundamentals

Solar Radiation

2009 ASHRAE Handbook—Fundamentals

Fig. 3 Solar Angles for Vertical and Horizontal Surfaces

BBE 4414/5414: Advanced Building Science Fundamentals

Solar Radiation

Solar Gains by Surface

- July 21st
- @ 45° N. Latitude

Hour	North Wall	East Wall	South Wall	West Wall	Roof
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	32	71	5	5	9
6	117	472	38	38	119
7	83	651	68	63	286
8	87	679	107	82	454
9	97	606	209	97	595
10	107	457	318	107	704
11	114	252	394	114	772
12	116	126	420	126	795
13	114	114	394	252	772
14	107	107	318	457	704
15	97	97	209	606	595
16	87	82	107	679	454
17	83	63	68	651	286
18	117	38	38	472	119
19	32	5	5	71	9
20	0	0	0	0	0
21	0	0	0	0	0
22	0	0	0	0	0
23	0	0	0	0	0
24	0	0	0	0	0
TOTAL	1390	3820	2698	3820	6673

Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

Figure 3.18: Solar gains - clear day values on July 21 at 45°N (W/m²)

BBE 4414/5414: Advanced Building Science Fundamentals

Annual Rainfall

Climate Zones

– North America

Source: Straube & Burnett, Building Science for Building Enclosure, Chapter 3

Figure 3.24: Average annual rainfall in North America

BBE 4414/5414: Advanced Building Science Fundamentals

Unconditioned Spaces

Predicting Temperatures

- Generally between indoor and outdoor conditions
- Function of heat gain from conditioned space relative to heat loss to outdoors
- Rule of thumb
 - cooling mode: $t_u = t_i 0.667(t_i t_o)$
 - heating mode: $t_u = t_i 0.50(t_i t_o)$

BBE 4414/5414: Advanced Building Science Fundamentals

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Preview for Next Class

- Intro to Air Exchange
 - Basic concepts
 - Terminology
- Readings
 - HPE: Chapter 3.2
 - HPE: Appendix B.11

BBE 4414/5414: Advanced Building Science Fundamentals