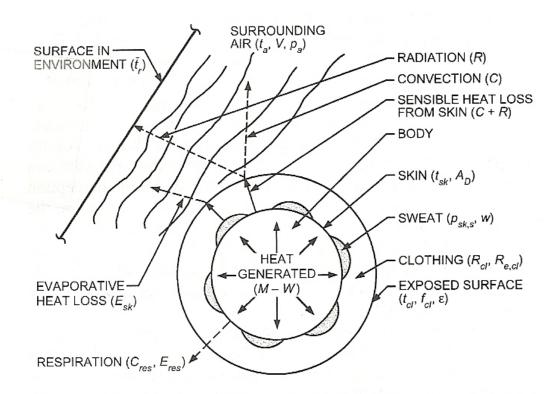
Advanced Building Science

- Thermal Comfort
 - Parameters of physiological comfort
 - Interior design conditions

- Readings
 - HF: Chapter 9 => 9.1 9.23

BBE 4414/5414: Advanced Building Science Fundamentals


- Conditions for Comfort
 - Physiological principles
- Indoor Design Conditions
 - temperatures
 - moisture and humidity

Physiological Principles

- Human comfort
 - temperature
 - air
 - mean radiant
 - humidity
 - air distribution
 - velocity
 - air cleanliness
 - odors
 - acoustical

BBE 4414/5414: Advanced Building Science Fundamentals

Thermal Body Interaction with the Environment

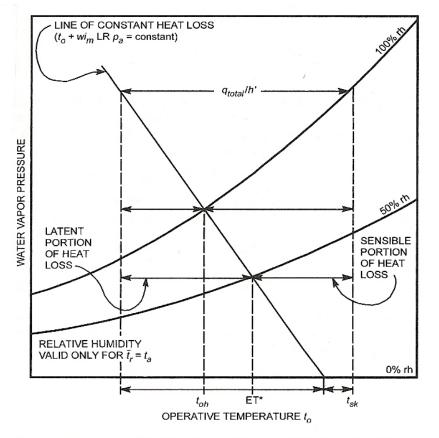
Fig. 1 Thermal Interaction of Human Body and Environment

https://www.researchgate.net/publication/223669260_Thermal_comfort_A_review_paper/figures?lo=1

BBE 4414/5414: Advanced Building Science Fundamentals

Thermal Exchanges with the Environment

- Body surface area
- Heat loss
 - sensible loss from the skin
 - predominantly convective and radiative
 - conduction is usually small
 - evaporative losses from the skin
 - respiratory losses


Environmental Parameters

- Directly measured parameters
 - dry-bulb temperature
 - wet-bulb temperature, dew-point temperature, relative humidity, and humidity ratio
 - total atmospheric pressure
 - air movement
 - radiant temperature
- Calculated parameters
 - mean radiant temperature
 - plane radiant temperature
 - radiant temperature asymmetry

Environmental Indices

- Operative Temperature => ambient temperature & MRT
- Effective Temperature => ambient temperature at 50% RH
- Humid Operative Temperature => ET at 100% RH
- Heat Stress Index
- Index of Skin Wettedness
- Wet-Bulb Globe Temperature => wet bulb and MRT
- Wet Globe Temperature => a direct measure of WBGT
- Wind Chill Index => temperature and wind velocity
 - used to calculate the wind chill factor

BBE 4414/5414: Advanced Building Science Fundamentals

Fig. 2 Constant Skin Heat Loss Line and Its Relationship to t_{oh} and ET*

https://www.researchgate.net/publication/223669260_Thermal_comfort_A_review_paper/figures?lo=1

BBE 4414/5414: Advanced Building Science Fundamentals

• Metabolic Rate

- Function of surface area
 - A = 0.108 * $m^{0.425}$ * $I^{0.725}$
 - m = mass in lb.; l = ht. in in.
- Activity
 - met = 18.4 Btu/(h-ft²)
- Clothing Level
 - Clo symbol is "I"
 - -R = 0.88 I

Source: ASHRAE Handbook Fundamentals 2013, Chapter 9.6

Table 4	Typical Metabolic Heat Generation	for
	Various Activities	

Various	Various Activities							
	Btu/h·ft ²	met*						
Resting								
Sleeping	13	0.7						
Reclining	15	0.8						
Seated, quiet	18	1.0						
Standing, relaxed	22	1.2						
Walking (on level surface)								
2.9 fps (2 mph)	37	2.0						
4.4 fps (3 mph)	48	2.6						
5.9 fps (4 mph)	70	3.8						
Office Activities								
Reading, seated	18	1.0						
Writing	18	1.0						
Typing	20	1.1						
Filing, seated	22	1.2						
Filing, standing	26	1.4						
Walking about	31	1.7						
Lifting/packing	39	2.1						
Driving/Flying								
Car	18 to 37	1.0 to 2.0						
Aircraft, routine	22	1.2						
Aircraft, instrument landing	33	1.8						
Aircraft, combat	44	2.4						
Heavy vehicle	59	3.2						
Miscellaneous Occupational Activitie	S							
Cooking	29 to 37	1.6 to 2.0						
Housecleaning	37 to 63	2.0 to 3.4						
Seated, heavy limb movement	41	2.2						
Machine work								
sawing (table saw)	33	1.8						
light (electrical industry)	37 to 44	2.0 to 2.4						
heavy	74	4.0						
Handling 110 lb bags	74	4.0						
Pick and shovel work	74 to 88	4.0 to 4.8						
Miscellaneous Leisure Activities								
Dancing, social	44 to 81	2.4 to 4.4						
Calisthenics/exercise	55 to 74	3.0 to 4.0						
Tennis, singles	66 to 74	3.6 to 4.0						
Basketball	90 to 140	5.0 to 7.6						
Wrestling, competitive	130 to 160	7.0 to 8.7						

Sources: Compiled from various sources. For additional information, see Buskirk (1960), Passmore and Durnin (1967), and Webb (1964). *1 met = 18.4 Btu/h·ft²

BBE 4414/5414: Advanced Building Science Fundamentals

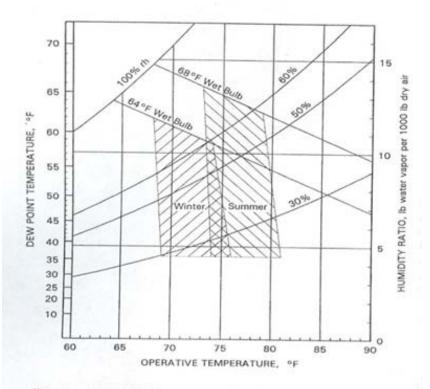
Predicting Thermal Sensation and Comfort

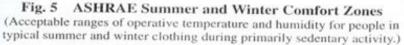
- For temperature and vapor pressure
- Exposure time
- Male vs. female

Table 9 Equations for Predicting Thermal Sensation(Y) of Men, Women, and Men and Women Combined

		Regression Equations ^{a, b}
Exposure Period, h		<i>t</i> = dry-bulb temperature, °F <i>p</i> = vapor pressure, psi
1.0	Men Women Both	Y = 0.122 t + 1.61 p - 9.584 Y = 0.151 t + 1.71 p - 12.080 Y = 0.136 t + 1.71 p - 10.880
2.0	Men Women Both	Y = 0.123 t + 1.86 p - 9.953 Y = 0.157 t + 1.45 p - 12.725 Y = 0.140 t + 1.65 p - 11.339
3.0	Men Women Both	Y = 0.118 t + 2.02 p - 9.718 Y = 0.153 t + 1.76 p - 13.511 Y = 0.135 t + 1.92 p - 11.122

^aY values refer to the ASHRAE thermal sensation scale.


^bFor young adult subjects with sedentary activity and wearing clothing with a thermal resistance of approximately 0.5 clo, $\bar{t}_r \approx \bar{t}_a$ and air velocities < 40 fpm.


Source: 2013 ASHRAE Handbook Fundamentals, Chapter 9

BBE 4414/5414: Advanced Building Science Fundamentals

Conditions for Thermal Comfort

- ASHRAE Comfort Zone
 - sedentary activity
 - typical clothing
- Based on satisfaction scores
 - 80% find the environment thermally acceptable
- Adjustments for Clothing / Activity Levels
 - shift the comfort zone
 - Fanger adjustments

Source: ASHRAE Handbook Fundamentals 2005, Chapter 8.12

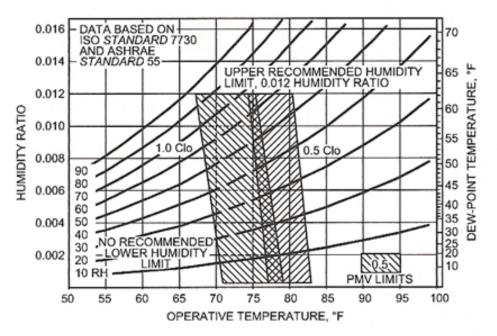
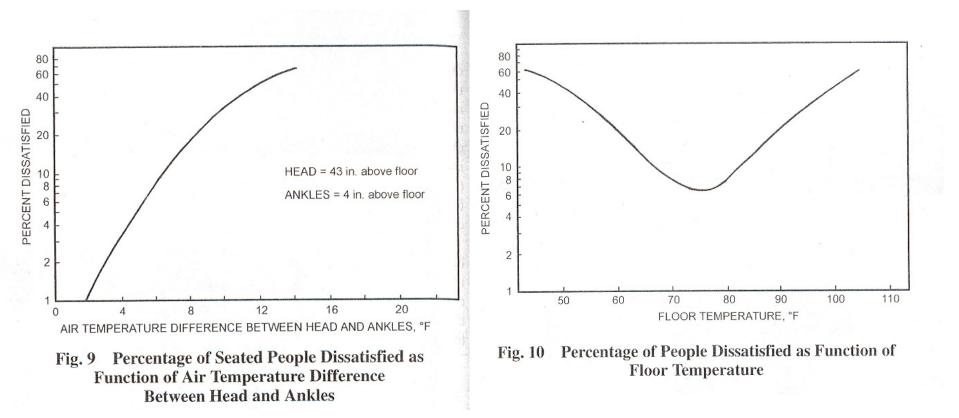
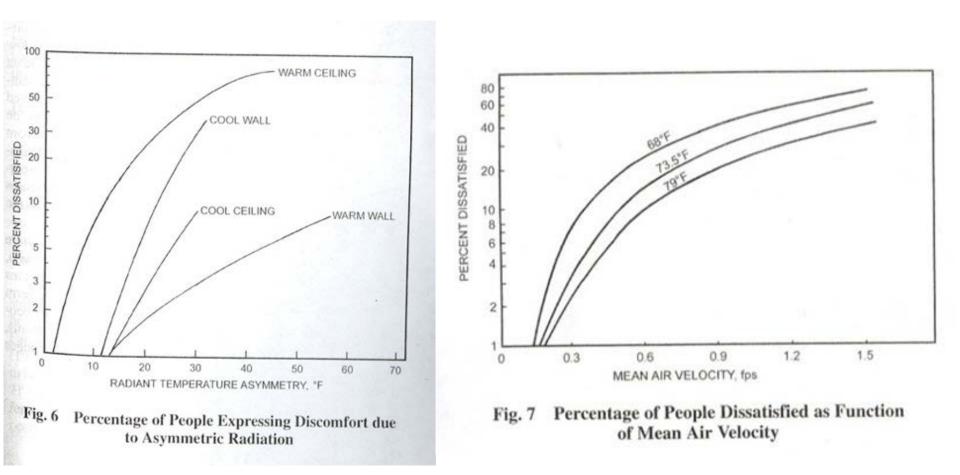



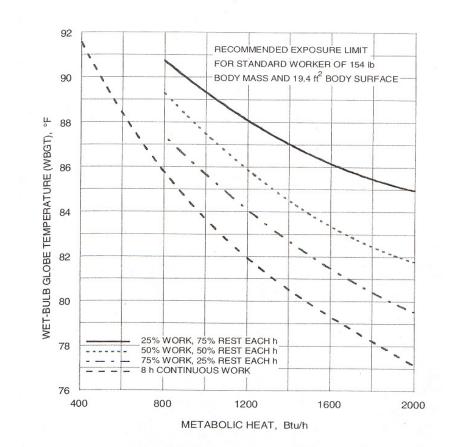
Fig. 5 ASHRAE Summer and Winter Comfort Zones [Acceptable ranges of operative temperature and humidity with air speed ≤ 40 fpm for people wearing 1.0 and 0.5 clo clothing during primarily sedentary activity (≤1.1 met).]


Source: ASHRAE Handbook Fundamentals 2013, Chapter 9.12

BBE 4414/5414: Advanced Building Science Fundamentals

Source: ASHRAE Handbook Fundamentals 2013, Chapter 9.12, Figures 12 and 13

BBE 4414/5414: Advanced Building Science Fundamentals



Source: ASHRAE Handbook Fundamentals 2013, Chapter 9, Figures 9 and 10

BBE 4414/5414: Advanced Building Science Fundamentals

Thermal Stress

- Heat and humidity
- Wet-bulb globe temperature
 - 70% naturally ventilated wet bulb
 - 20% black globe
 - 10% ambient

Source: ASHRAE Handbook Fundamentals 2013, Chapter 9, Figure 20

BBE 4414/5414: Advanced Building Science Fundamentals

Thermal Stress – Wind Chill

8.22

2001 ASHRAE Fundamentals Handbook

Wind — Speed,	Actual Thermometer Reading, °F											
	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60
mph		Equivalent Wind Chill Temperature, °F										
0	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60
5	48	37	27	16	6	-5	-15	-26	-36	-47	-57	-68
10	40	28	16	3	-9	-21	-34	-46	-58	-71	-83	-95
15	36	22	9	-5	-18	-32	-45	-59	-72	-86	99	-113
20	32	18	4	-11	-25	-39	-53	-68	-82	-96	-110	-125
25	30	15	0	-15	-30	-44	-59	-74	-89	-104	-119	-134
30	28	13	-3	-18	-33	-48	-64	-79	-94	-110	-125	-140
35	27	11	-4	-20	-36	-51	-67	-83	-98	-114	-129	-145
40	26	10	-6	-22	-38	-53	-69	-85	-101	-117	-133	-148
Little danger: In less than 5 h, with dry skin. Maximum danger from false sense of security.			Increasing danger: Danger of freezing exposed flesh within 1 min.			Great danger: Flesh may freeze within 30 s.						
WCI < 1400)				$(1400 \le WCI \le 2000)$			(WCI > 2000)					

Table 11 Equivalent Wind Chill Temperatures of Cold Environments

Research Institute of Environmental Medicine.

Notes: Cooling power of environment expressed as an equivalent temperature under calm conditions [Equation (81)].

Winds greater than 43 mph have little added chilling effect.

Source: ASHRAE Handbook Fundamentals 2013, Chapter 9, Table 12

BBE 4414/5414: Advanced Building Science Fundamentals

Moisture and Humidity

- Human comfort
 - 30% to 70%
- Static electricity
 - varies => generally less than 45%
- Prevention & treatment of disease
 - 50% maximum mortality for influenza virus
- Visible condensation
 - primarily windows
- Concealed condensation

Interior Humidity => Pat's Guide

- Occupant
- Furnishings & Finishes
 - woodwork
 - fine art, piano, etc.
- Building
 - surface condensation (windows, cold corners, etc.)
 - component characteristics
 - outdoor temperature dependent
 - cavity condensation (attic, walls, rim joists, etc.)
 - envelope characteristics
 - outdoor temperature dependent

BBE 4414/5414: Advanced Building Science Fundamentals 40 to 60% 35 to 45%

20 to ?? %

18

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Preview for Next Class

- Intro to Air Exchange
 - Basic concepts
 - Terminology
- Readings
 - HPE: Chapter 3.2
 - HPE: Appendix B.11

BBE 4414/5414: Advanced Building Science Fundamentals