Advanced Building Science

- Intro to Building Enclosures (Envelope)
 - Built facilities
 - Building enclosure functions

- Readings
 - HPE Chapter 2 (all) & 3 (p. 23-29 only)

Our Built Environment

- Human needs
- Functions of built facilities
 - support
 - distribute
 - control
 - finish
- Building attributes

BBE 4414/5414: Advanced Building Science Fundamentals

Our Built Environment – Human Needs

Figure 1.1: The five-step hierarchy of human needs for a built facility

Note: Inherent in all five fundamental levels of human need is the necessity for the appropriate superstructure in order to support the building enclosure, meet the need for internal structural separation (horizontal and vertical), and interface with the ground.

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 1

BBE 4414/5414: Advanced Building Science Fundamentals

Embodied & Operating Energy

Straube: High Performance Enclosures, Chapter 1

BBE 4414/5414: Advanced Building Science Fundamentals

Climate Zones

BBE 4414/5414: Advanced Building Science Fundamentals

Energy Consumption by End-Use

- Canadian Office Buildings
 - NRCan 2007

High Performance Enclosures

- California Office Buildings
 - CEC 2006

Straube: High Performance Enclosures, Chapter 1

BBE 4414/5414: Advanced Building Science Fundamentals

Distribution of Energy Use

MD40SQ-C

- 4-storey, square floor plate
- 50,000 ft² GFA
- 40% WWR (N, S, E & W)
- Enclosure "A-Exemplary"

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Distribution of Energy Use

Seattle-A

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Priorities for Low-Energy Commercial Buildings

- 1. Limit window to wall ratio to 30 to 40%
- 2. Increase window performance
- 3. Increase wall/roof insulation levels
- 4. Separate ventilation air from heating & cooling system
- 5. Use occupancy and daylighting controls
- 6. Reduce equipment, plug, and lighting loads
- 7. Use demand controlled ventilation with heat recovery
- 8. Improve boiler/chiller efficiency
 - Use low temperature hydronic heating and cooling, when possible
- 9. Use variable speed pumps and fans
- 10. Simple, compact building form

Straube: High Performance Enclosures, Chapter 2

Recommended Glazing System U-values

Zone	5	6	7	8	5	6	7	8
	Heat	ting Degr	ee Day (*	18 °C)	Heat	ting Degr	ee Day (6	65 °F)
WWR	3000	4000	5000	6000	5400	7200	9000	10800
25	2.5	2.4	2.2	1.9	0.44	0.42	0.39	0.33
30	2.3	2.2	1.9	1.7	0.41	0.39	0.33	0.30
35	2.3	1.9	1.7	1.4	0.41	0.33	0.30	0.25
40	2.1	1.65	1.45	1.3	0.37	0.29	0.26	0.23
50	1.8	1.5	1.2	1.1	0.32	0.26	0.21	0.19
60	1.5	1.2	1.1	0.95	0.26	0.21	0.19	0.17
70	1.3	1.1	1	0.85	0.23	0.19	0.18	0.15
80	1.2	1	0.9	0.8	0.21	0.18	0.16	0.14

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Impact of Window-to-Wall Ratio

Mid-size Swedish Office

- R-20 walls
- R-3.5 windows
- w/daylighting controls & demand ventilation

Servers

Pumps & Fans

Space Heating

Plug Loads

Lighting

Cooling

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Window – Wall Relationship

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Impact of Building Form

Compactness Factor

Surface Area

Floor Area

Floor/Enclosure Ratio =

Enclosure Area

BBE 4414/5414: Advanced Building Science Fundamentals

Impact of Building Form

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Form Factors Vary by Building Type

Office: 12 ft. floor-to-floor Floor plate: 14,000 ft²

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Impact of Building Form

Straube: High Performance Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Example of Modern Office Building

BBE 4414/5414: Advanced Building Science Fundamentals

Physical Functions – Support

- Accommodate, resist, distribute, and transfer all physical loadings
 - air pressure differentials
 - ground motion
 - fire
 - gravitational effects
 - impact
 - volume changes

Physical Functions – Control

- Into, within, and out of the building ...
 - people & vehicles
 - animals, birds, insects
 - environmental loadings
 - precipitation
 - solar radiation
 - heat (temperature)
 - air
 - moisture (water, vapor)
 - sound
 - light
 - contaminants and particulates

BBE 4414/5414: Advanced Building Science Fundamentals

19

Physical Functions – Finish

- Appearance or suitability of all relevant faces
 - color, speculance, reflectance, etc.
 - texture, pattern, relief
 - shape
 - proportion

Physical Functions – Distribute

- Transport or flow into, within, and out of the building
 - people
 - goods
 - vehicles
 - data
 - utilities
 - water
 - air
 - gas
 - electricity

BBE 4414/5414: Advanced Building Science Fundamentals

21

Building Attributes

- buildability or constructability
- economic viability
- viewability
- utility
- sustainability
- serviceability
- safety
- productivity
- operability
- maintainability
- repairability
- durability
- disposability

Figure 1.3: Components of built facilities and their buildings

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 1

Building Science for Building Enclosures

BBE 4414/5414: Advanced Building Science Fundamentals

Life-Cycle of a Built Facility

Table 1.4: Stages in the life of a built facility and the related product

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 1

BBE 4414/5414: Advanced Building Science Fundamentals

Life-Cycle Costs (commercial building)

- Delivery costs
 - 2 4%
- Financing Costs
 - ???
- Operating costs
 - 2-6%
 - utilities 20%
 - maintenance 15%
 - admin, clean, etc. 30%
 - fixed costs 35%
- Occupant related costs
 - 90-96%

Figure 1.6: Opportunity to influence building performance

Building Science for Building Enclosures

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 1

BBE 4414/5414: Advanced Building Science Fundamentals

Building Enclosure – Definition

Building Enclosure Components:

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Building Enclosure

- Base floor systems
- Below-grade wall systems
- Above-grade wall systems
 - windows and doors
- Roof systems
 - skylights

Figure 2.2: The linkage between the built environment and the physical components of the building enclosure

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Enclosure Loadings – From Exterior

		Туре						
		Heat related	Moisture related	Air related	Ground related	Gravity related		
	Weather or natural climate	Ambient conditions, solar	RH, fog, rain, ice, snow	Barometric pressure, Wind		Water, snow, hail		
	Abnormal climatic effects	Reflected solar, lightning	Tornado, hurricane, flooding	Tornado, hurricane	Frost heave, landslide	Wind-borne missile		
Source	Natural phenomena	Fire, Ground water	Adfreezing, Freezing	Radon, methane, soil gas	Seismic, land- slide, settlement, termites, plants, etc.	Hydrostatic pressure, soil pressure		
	Human-made weather	Global warming, city effect	Smog, Acid rain	Wind related vortex/swirl		e. Sauel		
	Human- induced events	Fire	Fire (hoses, sprinklers, etc.)	Smoke, sonic boom, sound, explosion		Impact, wear and tear		

Table 2.1: Loadings from the exterior environment

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Enclosure Loadings – From Interior

Table 2.2: Loadings from the interior environment

		Туре						
		Heat related	Moisture related	Air-flow related	Ground related	Gravity related		
Source	Interior Space	Ambient conditions, solar	RH, water (sprinklers, etc.)	Barometric pressure, wind, stack, fan-induced		Water		
	Natural phenomena	Fire	Fungal growth, mold	Radon, methane	Settlement, termites, plants, etc.			
	Human- induced events	Fire, people	People, flooding, combustion, equipment	Smoke, sound, explosion		Impact, wear and tear, dead & live loads		

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Enclosure Loadings – From Enclosure

Туре						
		Heat related	Moisture related	Air-flow related	Ground related	Gravity related
Source	Element or Sou component Cha being considered	rdeostrange, ptehange, shape change, fire	whilettbuiltding so moisture, volume change, fungal growth, mold, creep, shrinkage, etc.	ciAffegassinging air flow, air pressure differentials	Enclosures,	Self weight, live loads
	Adjacent Elements	Volume and shape change, fire	Volume change	Smoke		Dead loads live loads

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

Enclosure and Its Functions

Figure 2.4: The enclosure and its functions

Source: Straube and Burnett, Building Science for Building Enclosures, Chapter 2

BBE 4414/5414: Advanced Building Science Fundamentals

- There is hardly anything in this world that some man cannot make a little worse and sell a little cheaper.
 - and the people who consider price only are this man's lawful prey.
- It is unwise to pay too much, but it's more unwise to pay to little.
 - When you pay too much you lose a little money, that is all.
 - When you pay too little, you sometimes lose everything,
 - because the thing you bought was incapable of doing the very thing you bought it to do.

- John Ruskin (1819-1900)

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Preview for Next Class

- Intro to Thermal Comfort
 - Interior design conditions
- Climate Summary
 - Exterior design conditions
- Readings
 - HF: Chapter 9.1 to 9.23
 - HF: Chapter 14
 - BSBE: Chapter 3

BBE 4414/5414: Advanced Building Science Fundamentals