
BBE 4414/5414: Advanced Building Science

- General Mechanical & Heating Systems
 - General mechanical considerations
 - Combustion
 - Residential heating equipment
- Readings
 - HF Chapter 28
 - Heating Handout

BBE 4414/5414: Advanced Building Science Fundamentals

All-Air HVAC Schematic

Simple All-Air Air-Handling Unit with Associated Airflows Fundame

Source: ASHRAE Handbook Fundamentals 2013, Chapter 16.2

BBE 4414/5414: Advanced Building Science Fundamentals

Residential Systems – HVAC

- Heating
 - Hydronic radiator used to be very common
 - Forced air is big today, especially in the Midwest
 - Hydronic (primarily in-floor) is growing
- Ventilation
 - Relatively new
 - Started out as bath and kitchen fans
 - Now whole house approaches/equipment
- Air-Conditioning (Cooling?)
 - Has gone from none to room to central air

Residential Systems – Other

- Circulation & Distribution
 - Internal circulation/distribution is important for comfort
 - It is useful for moisture averaging
 - Can be critical for good air quality
- Filtration
 - Forced-air filtration is pretty common, but generally poor
 - Stand-alone room and whole house filtration are growing
- Humidification / Dehumidification
 - Humidification went from none to almost all to some in heating climates
 - Dehumidification is moving from basement floor models to whole house approaches/equipment

Mechanical Systems

Life Cycle Energy Costs

- Initial costs
 - equipment of material costs
 - installation costs
- Operating costs
 - energy expenditures
 - maintenance costs

Fuel Cost Comparison – \$ per MBtu

PRE-PUBLICATION DRAFT-8/1/93

Guide to a Performance-Built House

Table 4-1: Heating fuel cost comparison.

Fuel	Quantity for one million Btu's	s	Fuel price	Annual efficiency			Fuel Cost per million Btu's		
Natural gas	10.0 Ccf	x	\$ per Ccf	/	(0.80 or)	=			
LP gas.	11.11 gal.	x	\$ per gal.	/	(0.80 or)	=			
Fuel oil	7.14 gal.	x	\$ per gal.	/	(0.75 or)	=			
Electricity (resistance)	293 kWh	×	\$ per kWh	/	(1.00 or)	=			
Electricity (air heat pump)	293 kWh	x	\$ per kWh	/	(1.50* or)	=			
Electricity (water heat pump	o) 293 kWh	x	\$ per kWh	/	(3.00* or)	=			
Mixed woods	0.0476.	x	\$ per cord	/	(0.50 or)	=			
Kerosene	7.41 gal.	x	\$ per gal.	/	(0.85 or)	=			

* This figure represents the efficiency of the heat pump. Usually called the coefficient of performance (COP) the heat output of the unit is divided by the electricity used.

Units:				
	Ccf	=	100 cubic feet of gas	
	therm		about 1 Ccf	
	kWh	=	1 kilowatt hour	
	cord	=	4 x 4 x 8 foot stack of wood	

BBE 4414/5414: Advanced Building Science Fundamentals

Mechanical Systems

True Cost of Energy

- Direct cost of fuel/electricity
 - customer fee
 - distribution fee
 - consumption fee
- Indirect costs of energy
 - subsidies, tax incentives, etc.
- Externalities
 - environmental impacts
 - health risks

BBE 4414/5414: Advanced Building Science Fundamentals

Heating Equipment

- Principles of combustion
 - fuels
 - combustion calculations
- Burners
- Residential furnaces
- Commercial furnaces
- Boilers
- Terminal units
- Electric heating

Principles of Combustion

- Hydrocarbons + oxygen => heat + carbon dioxide + water
 - also nitrogen oxides, aldehydes
 - may be sulfur oxides, carbon monoxide
- Conditions that promote incomplete combustion
 - insufficient air and fuel mixing
 - insufficient air supply
 - insufficient residence time
 - flame impingement
 - too low flame temperature
- Heating value
 - high heating value includes condensed water vapor

BBE 4414/5414: Advanced Building Science Fundamentals

- Fuels
 - Gases: Btu/ft.³
 - Liquids: Btu/gal.
 - Solids: Btu/lb.
- Combustion Calculations
 - important, but beyond the scope of this class
 - if interested, see ASHRAE Handbook

Heating Values

Common Fuels										
Substance	Mole- cular For- mula	Higher Heating Values, ^a Btu/ft ³	Higher Heating Values, ^a Btu/lb	Lower Heating Values, ^a Btu/lb	Specific Volume, ^b ft ³ /lb					
Carbon (to CO)	С		3,950	3,950						
Carbon (to CO ₂)	С		14,093	14,093						
Carbon monoxide	CO	321	4,347	4,347	13.5					
Hydrogen	H_2	325	61,095	51,623	188.0					
Methane	CH_4	1012	23,875	21,495	23.6					
Ethane	C_2H_6	1773	22,323	20,418	12.5					
Propane	C_3H_8	2524	21,669	19,937	8.36					
Butane	C_4H_{10}	3271	21,321	19,678	6.32					
Ethylene	C_2H_4	1604°	21,636	20,275						
Propylene	C ₃ H ₆	2340°	21,048	19,687	9.01					
Acetylene	C_2H_2	1477	21,502	20,769	14.3					
Sulfur (to SO ₂)	S		3,980	3,980						
Sulfur (to SO_3)	S	- 14 <u>0</u>	5,940	5,940	5 <u></u>					
Hydrogen sulfide	H_2S	646	7,097	6,537	11.0					

Table 3Heating Values of Substances Occurring in
Common Fuels

Adapted from Gas Engineers Handbook (1965).

^aAll values corrected to 60°F, 30 in. Hg, dry. For gases saturated with water vapor at

60°F, deduct 1.74% of value to adjust for gas volume displaced by water vapor.

^bAt 32°F and 29.92 in. Hg.

^cNorth American Combustion Handbook (1986).

Source: ASHRAE Handbook Fundamentals 2013 Chapter 28.2

BBE 4414/5414: Advanced Building Science Fundamentals

Heating Values for Gas

Table 19-2 Heating Values of Gaseous Fuels

Gas	Btu/ft ³	MJ/m ³	Specific Gravity Air = 1.0
Natural	1030	38.4	0.60
Propane	2500	93.1	1.53
Butane	3175	118.3	2.00

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.3

BBE 4414/5414: Advanced Building Science Fundamentals

Heating Values for Liquids

Table 6	Typical API Gravity, Density, and Higher Heating
	Value of Standard Grades of Fuel Oil

Grade No.	API Gravity	Density, lb/gal	Higher Heating Value, Btu/gal
1	38 to 45	6.950 to 6.675	137,000 to 132,900
2	30 to 38	7.296 to 6.960	141,800 to 137,000
4	20 to 28	7.787 to 7.396	148,100 to 143,100
5L	17 to 22	7.940 to 7.686	150,000 to 146,800
5H	14 to 18	8.080 to 7.890	152,000 to 149,400
6	8 to 15	8.448 to 8.053	155,900 to 151,300

Source: ASHRAE Handbook Fundamentals 2013, 28.7

BBE 4414/5414: Advanced Building Science Fundamentals

Heating Values for Solids

T7 R

TT ... A.

T-LL 10 4

Table 19-4	Heating Value of Coal						
	Heating Value As Received						
Rank	Btu/lb	MJ/kg					
Anthracite	12,700	29.5					
Semianthracite	13,600	31.6					
Low-volatile bituminous	14,350	33.4					
Medium-volatile bituminous	14,000	32.6					
High-volatile bituminous A	13,800	32.1					
High-volatile bituminous B	12,500	29.1					
High-volatile bituminous C	11,000	25.6					
Subbituminous B	9000	20.9					
Subbituminous C	8500	19.8					
Lignite	6900	16.0					

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.3

BBE 4414/5414: Advanced Building Science Fundamentals

Heating Values for Solids

	As Received,	Constituents, Percent by Mass									
Rank	Btu/lb	0	Η	С	Ν	S	Ash				
Anthracite	12,700	5.0	2.9	80.0	0.9	0.7	10.5				
Semianthracite	13,600	5.0	3.9	80.4	1.1	1.1	8.5				
Low-volatile bituminous	14,350	5.0	4.7	81.7	1.4	1.2	6.0				
Medium-volatile bituminous	14,000	5.0	5.0	81.4	1.4	1.5	6.0				
High-volatile bitun	ninous										
Туре А	13,800	9.3	5.3	75.9	1.5	1.5	6.5				
В	12,500	13.8	5.5	67.8	1.4	3.0	8.5				
С	11,000	20.6	5.8	59.6	1.1	3.5	9.4				
Subbituminous											
Type B	9,000	29.5	6.2	52.5	1.0	1.0	9.8				
С	8,500	35.7	6.5	46.4	0.8	1.0	9.6				
Lignite	6,900	44.0	6.9	40.1	0.7	1.0	7.3				

Table 8Typical Ultimate Analyses for Coals

Source: ASHRAE Handbook Fundamentals 2013, 28.9

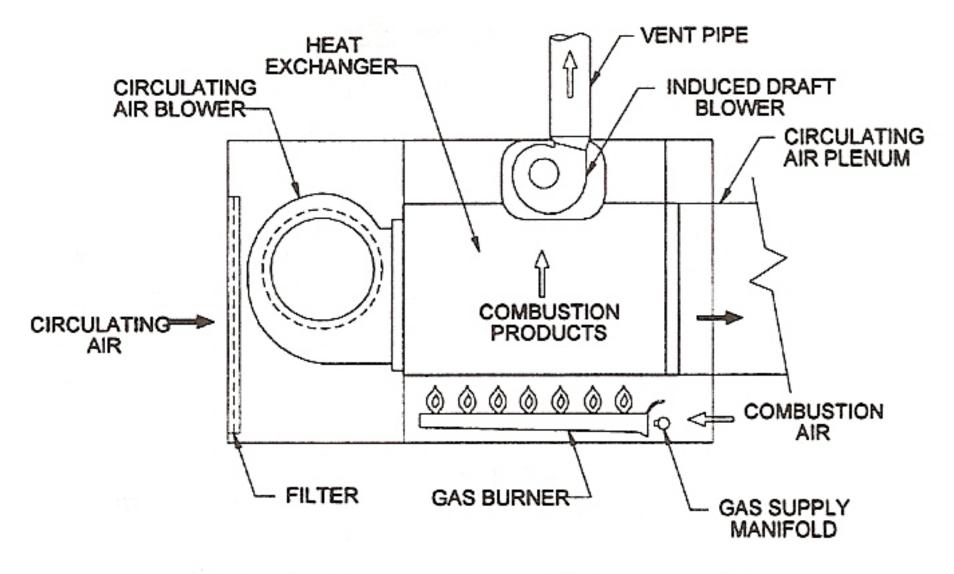
BBE 4414/5414: Advanced Building Science Fundamentals

Stoichiometric Reactions

			Stoichiometric Oxygen and Air Requirements				Flue Gas from Stoichiometric Combustion with Air							
			lb/lb	Fuel ^a	ft ³ /ft ³	Fuel	Ulti-		ft ³ /ft ³	Fuel	lb/lb	Fuel		
Constituent	Mole- cular Formula	Combustion Reactions	02	Air	0 ₂	Air	mate CO ₂ , %	Dew Point, ^c °F	CO ₂	H ₂ O	CO ₂	H ₂ O		
Carbon (to CO)	С	$C + 0.5O_2 \rightarrow CO$	1.33	5.75	b	b						13		
Carbon (to CO ₂)	С	$C + O_2 \rightarrow CO_2$	2.66	11.51	b	b	29.30	_	_	—	3.664	6 		
Carbon monoxide	CO	$\rm CO + 0.5O_2 \rightarrow \rm CO_2$	0.57	2.47	0.50	2.39	34.70		1.0		1.571			
Hydrogen	H ₂	$H_2 + 0.5O_2 \rightarrow H_2O$	7.94	34.28	0.50	2.39		162		1.0		8.937		
Methane	CH ₄	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	3.99	17.24	2.00	9.57	11.73	139	1.0	2.0	2.744	2.246		
Ethane	C_2H_6	$C_2H_6 + 3.5O_2 \rightarrow 2CO_2 + 3H_2O$	3.72	16.09	3.50	16.75	13.18	134	2.0	3.0	2.927	1.798		
Propane	C ₃ H ₈	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	3.63	15.68	5.00	23.95	13.75	131	3.0	4.0	2.994	1.634		
Butane	$C_{4}H_{10}$	$C_4H_{10} + 6.5O_2 \rightarrow 4CO_2 + 5H_2O$	3.58	15.47	6.50	31.14	14.05	129	4.0	5.0	3.029	1.550		
Alkanes	$C_n H_{2n+2}$	$C_n H_{2n+2} + (1.5n + 0.5)O_2 \rightarrow nCO_2 + (n+1)H_2O$			1.5 <i>n</i> + 0.5	7.18n + 2.39		128 to 127	n	<i>n</i> + 1	$\frac{44.01n}{14.026n + 2.016}$	$\frac{18.01(n+1)}{14.026n+2.016}$		
Ethylene	C_2H_4	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$	3.42	14.78	3.00	14.38	15.05	125	2.0	2.0	3.138	1.285		
Propylene	C ₃ H ₆	$\tilde{C_3H_6} + 4.5O_2 \rightarrow 3CO_2 + 3H_2O$	3.42	14.78	4.50	21.53	15.05	125	3.0	3.0	3.138	1.285		
Alkenes	$C_n H_{2n}$	$C_nH_{2n} + 1.5nO_2 \rightarrow nCO_2 + nH_2O$	3.42	14.78	1.50n	7.18n	15.05	125	n	n	3.138	1.285		
Acetylene	C_2H_2	$C_2H_2 + 2.5O_2 \rightarrow 2CO_2 + H_2O$	3.07	13.27	2.50	11.96	17.53	103	2.0	1.0	3.834	0.692		
Alkynes	$C_n H_{2m}$	$C_n H_{2m} + (n + 0.5m)O_2 \rightarrow$	_		n + 0.5m		_		n	т	22.005n	9.008m		
e		$nCO_2 + mH_2O$				+ 2.39m					6.005n + 1.008m	6.005n + 1.008n		
									SO _x	H ₂ O	SO _x	H ₂ O		
Sulfur (to SO ₂)	S	$S + O_2 \rightarrow SO_2$	1.00	4.31	ь	b			1.0SO ₂		1.998 (SO ₂)			
Sulfur (to SO_3)	S	$S + 1.5O_2 \rightarrow SO_3$	1.50	6.47	b	b			1.0SO3		2.497 (SO ₃)	<u> </u>		
Hydrogen sulfide	H ₂ S	$H_2S + 1.5O_2 \rightarrow SO_2 + H_2O$	1.41	6.08	1.50	7.18		125	1.0SO2	1.0	1.880 (SO ₂)	0.528		

Adapted, in part, from *Gas Engineers Handbook* (1965). ^aAtomic masses: H = 1.008, C = 12.01, O = 16.00, S = 32.06. ^bVolume ratios are not given for fuels that do not exist in vapor form at reasonable temperatures or pressure. ^cDew point is determined from Figure 2.

Source: ASHRAE Handbook Fundamentals 2013, Chapter 28.2


BBE 4414/5414: Advanced Building Science Fundamentals

• Burners

- atmospheric injection, luminous flame, power burner
- atmospheric vented, power-vented, direct vent (sealed)
- Residential Furnaces
 - horizontal, upflow, downflow
 - efficiencies
 - steady-state
 - utilization efficiency
 - annual fuel utilization efficiency

BBE 4414/5414: Advanced Building Science Fundamentals

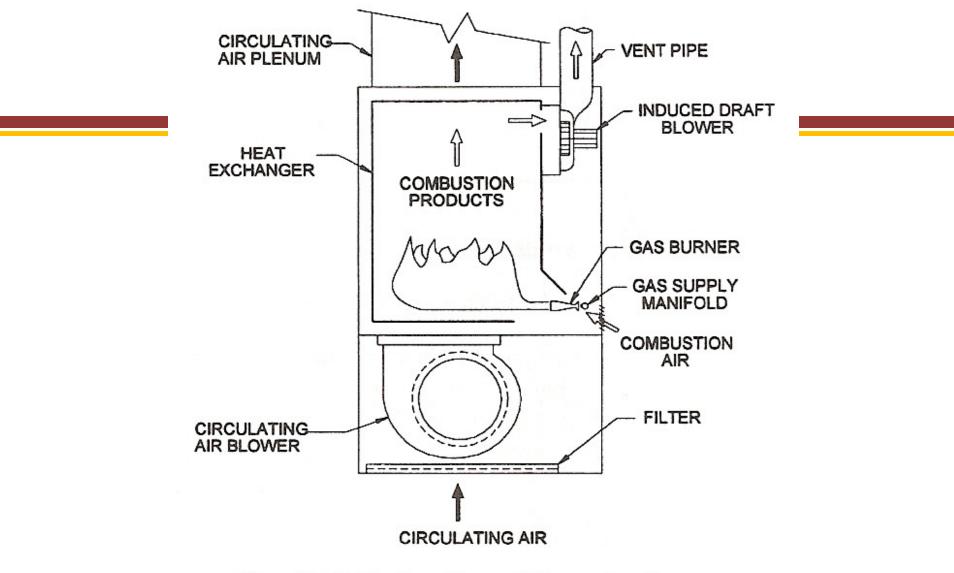

17

Fig. 19-3 Horizontal Forced Warm-Air Furnace

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.6

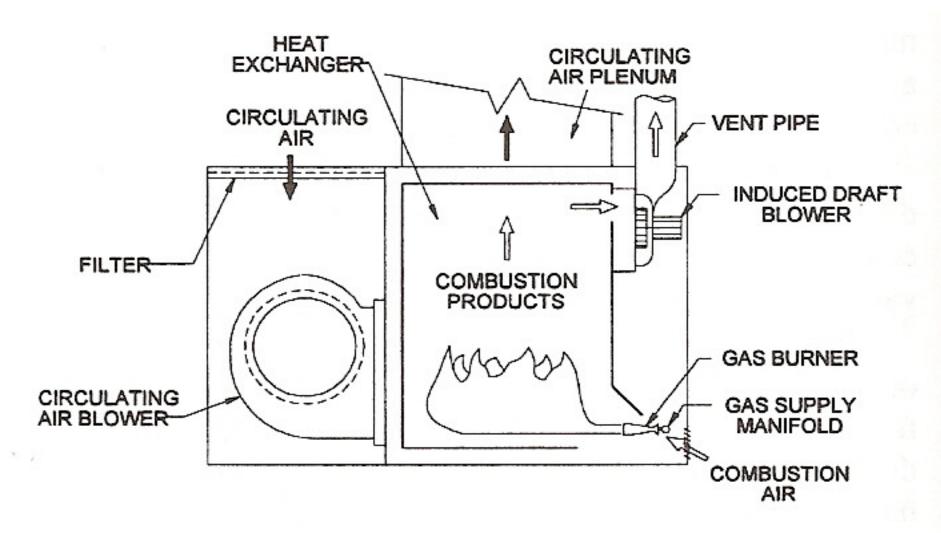

BBE 4414/5414: Advanced Building Science Fundamentals

Fig. 19-4 Upflow Forced Warm-Air Furnace

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.6

BBE 4414/5414: Advanced Building Science Fundamentals

Fig. 19-5 Basement Forced Warm-Air Furnace

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.6

BBE 4414/5414: Advanced Building Science Fundamentals

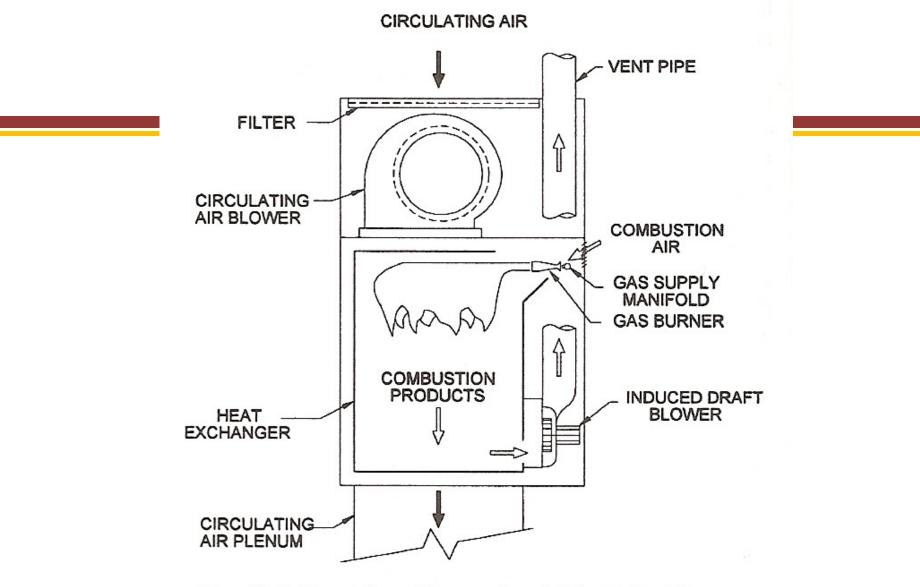


Fig. 19-6 Downflow (Counterflow) Warm-Air Furnace

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.6

21

BBE 4414/5414: Advanced Building Science Fundamentals

- Boilers
 - working temperature & pressure
 - efficiency
 - combustion efficiency
 - overall efficiency
- Terminal Units
 - radiator
 - convectors
 - baseboard
 - finned tubes
- Electric Heating

Terminal Units – Convectors/Radiators

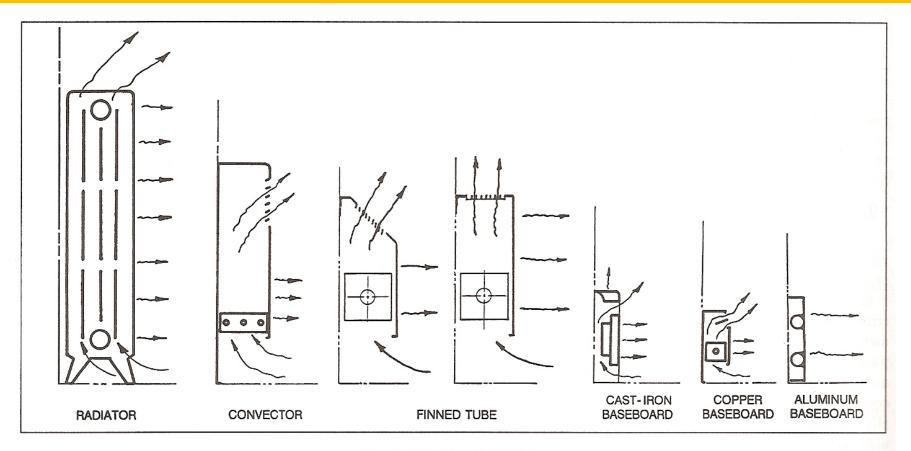


Fig. 19-11 Terminal Units

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.13

BBE 4414/5414: Advanced Building Science Fundamentals

Annual Fuel Utilization Efficiency

Table 19-5 AFUE Values of Various Furnaces Located in Conditioned Space

	AFU	E, %
Type of Gas Furnace	Indoor	ICS ^a
1. Natural-draft with standing pilot	64.5	63.9
2. Natural-draft with intermittent ignition	69.0	68.5
3. Natural-draft with intermittent ignition and auto vent damper	78.0	68.5
4. Fan-assisted combustion with standing pilot or inter- mittent ignition	80.0	78.0
5. Same as 4, except with improved heat transfer	82.0	80.0
6. Direct vent with standing pilot, preheat	66.0	64.5
7. Direct vent, fan-assisted combustion, and intermittent ignition	80.0	78.0
8. Fan-assisted combustion (induced-draft)	80.0	78.0
9. Condensing	93.0+	91.0+
Type of Oil Furnace	Indoor I	CS ^a
1. Standard	71.0	69.0
2. Same as 1, with improved heat transfer	76.0	74.0
3. Same as 2, with auto vent damper	83.0	74.0
4. Condensing	91.0	89.0

^aIsolated combustion system.

Source: Howell, Sauer, & Coad, Principles of Heating, Ventilating, & Air Conditioning, 1997, Chapter 19.7

BBE 4414/5414: Advanced Building Science Fundamentals

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Next Class

- Air Conditioning (Cooling)
 - Equipment
 - Systems
 - Efficiencies
 - Operations/Maintenance
- Readings
 - HF 20 (review only)
 - Air-Conditioning Handout

BBE 4414/5414: Advanced Building Science Fundamentals