Advanced Building Science

- Overview of Load Calculations
 - Principles
 - Types of calculations
- Heating Load Calculations
 - Overview of residential features
 - Heating load principles
 - General procedure
 - Pick-up loads
- Readings
 - HF: Chapter 17 primary focus
 - HF: Chapter 18 be familiar with generalized procedures & tables

Overview of Load Calculations

Overall Modeling Strategy

- Load Model
- Systems Model
- Plant Model
- Economic Model

2

Heating Load Calculations

Overview of Residential Features

- Typically conditioned (and possibly occupied) 24 hrs/day
- System loads are primarily imposed by heat loss through the envelope and by air exchange (infiltration & ventilation)
 - internal loads are small by comparison
- Usually conditioned as a single zone
 - so unit capacity cannot be redistributed from one area to another

Heat Load Calculations

Overview of Residential Features – cont'd

- Most heating/cooling units are relatively small in capacity
 - and operate at partial load conditions most of the year
- Dehumidification occurs only during cooling unit operation
- Multi-family units are similar to single family detached
 - but may not have sides exposed in all directions

Δ

Uses of Basic Load Fundamentals

- Material Comparisons
- Energy Compliance
 - overall thermal envelope heat loss
- Building Design Loads
- Energy Estimating

A simplified approach to estimate loads for the "worst case" conditions that can reasonably be anticipated during a heating season.

- primary orientation is ensuring the heating equipment is "adequately" sized
- can be done for whole building or room by room

Why wouldn't we design for the most severe condition?

BBE 4414/5414: Advanced Building Science Fundamentals

Safety Factors and Allowances

- Common Practice (in the past)
 - 10 to 20% oversizing allowances for pipe/duct losses
 - 10 to 20% for pick-up loads
 - other factors based on experience or concern of the designer
- Generally not necessary in well-insulated and airtight structures

- Code generally limits oversizing

Generalized Procedure

- Select indoor and outdoor design conditions
 - estimate temperatures in adjacent unheated spaces
- Select or compute heat transfer coefficients
- Determine net area of all envelope components
- Compute heat transmission losses for each component
- Compute heat losses from grade-level slabs
- Compute the infiltration & ventilation heat losses
- Sum the transmission and infiltration/ventilation losses
- Consider pick-up loads

Heating Load – Design Conditions

- Outdoor design conditions
 - will the building be exposed to abnormal conditions
 - be mindful of wind
- Indoor design conditions
 - 72 degrees is common (max. for MN Energy Code)

Heating Load – Design Conditions

- Temperatures in Adjacent Spaces

 A function of surface areas & heat transfer coefficients
- Common spaces
 - Garages
 - for many calculations, it is assumed to be at outdoor conditions
 - however, for insulated garages many will assume the mean
 - Attics
 - most times assume outdoor conditions (ASHRAE 17.11)
 - however, see procedure at ASHRAE 2013 17. 3
 - Crawl spaces
 - a special case, but the procedures in the book are really bad!

Transmission Heat Losses – Above Grade

- Heat loss through walls
- Heat loss through fenestration
- Heat loss through ceilings & roof
 - usually consider attic to be outdoor temperature

BBE 4414/5414: Advanced Building Science Fundamentals

Transmission Heat Losses – Below Grade

- Heat loss is a function of soil temperature that is related to outdoor temperatures
 - less fluctuation
 - considerable lag
- Foundation components
 - below grade walls
 - below grade floors
 - slab-on-grade

Infiltration & Ventilation Losses

- Sensible
- Latent

- not usually included in residential design heat load

BBE 4414/5414: Advanced Building Science Fundamentals

Heating Load Calculations

- Heating Load Summary Form
 - Entire building
 - at a single point in time
 - Room by room
 - at room peak
 - at building peak
- Pick-Up Load
 - Poorly understood and documented
 - Somewhat controversial

Duct Losses/Gains

			•	<u> </u>									
		2 or More Stories											
	Supply/Return Leakage	11%/11%			5%/5%			11%/11%			5%/5%		
Duct Location	Insulation ft ² ·h·°F/Btu	R-0	R-4	R-8	R-0	R-4	R-8	R-0	R-4	R-8	R-0	R-4	R-8
Conditioned space							No loss	$(F_{dl}=0)$					Ci.
Attic	С	1.26	0.71	0.63	0.68	0.33	0.27	1.02	0.66	0.60	0.53	0.29	0.25
	H/F	0.49	0.29	0.25	0.34	0.16	0.13	0.41	0.26	0.24	0.27	0.14	0.12
	H/HP	0.56	0.37	0.34	0.34	0.19	0.16	0.49	0.35	0.33	0.28	0.17	0.15
Basement	С	0.12	0.09	0.09	0.07	0.05	0.04	0.11	0.09	0.09	0.06	0.04	0.04
	H/F	0.28	0.18	0.16	0.19	0.10	0.08	0.24	0.17	0.15	0.16	0.09	0.08
	H/HP	0.23	0.17	0.16	0.14	0.09	0.08	0.20	0.16	0.15	0.12	0.08	0.07
Crawlspace	С	0.16	0.12	0.11	0.10	0.06	0.05	0.14	0.12	0.11	0.08	0.06	0.05
	H/F	0.49	0.29	0.25	0.34	0.16	0.13	0.41	0.26	0.24	0.27	0.14	0.12
	H/HP	0.56	0.37	0.34	0.34	0.19	0.16	0.49	0.35	0.33	0.28	0.17	0.15

Table 6 Typical Duct Loss/Gain Factors

Values calculated for ASHRAE *Standard* 152 default duct system surface area using model of Francisco and Palmiter (1999). Values are provided as guidance only; losses can differ substantially for other conditions and configurations. Assumed surrounding temperatures:

Cooling (C): $t_o = 95^{\circ}F$, $t_{attic} = 120^{\circ}F$, $t_b = 68^{\circ}F$, $t_{crawl} = 72^{\circ}F$

Heating/furnace (H/F) and heating/heating pump (H/HP): $t_o = 32^{\circ}F$, $t_{attic} = 32^{\circ}F$, $t_b = 64^{\circ}F$, $t_{crawl} = 32^{\circ}F$

Source: ASHRAE Handbook Fundamentals 2013 Chapter 17.8

BBE 4414/5414: Advanced Building Science Fundamentals

Load Source	Equation	Tables and Notes
Exterior surfaces above grade	$q = UA\Delta t$	$\Delta t = t_i - t_o$
Partitions to unconditioned buffer space	$q = UA\Delta t$	$\Delta t = \text{temp. difference}$ across partition
Walls below grade	$q = U_{avg,bw} A(t_i)$	t_{gr}
Floors on grade	$q = F_p p \Delta t$	See Chapter 18, Equations (41) and (42)
Floors below grade	$q = U_{avg, bf} A(t_{in}$	(37) and (38)
Ventilation/infiltration	$q_{vi} = C_s Q \Delta t$	From Common Data and Procedures section
Total sensible load	$q_s = \Sigma q$	

Table 16 Summary of Heating Load Calculation Equations

Source: ASHRAE Handbook Fundamentals 2013 Chapter 17.13

BBE 4414/5414: Advanced Building Science Fundamentals University of Minnesota – Bioproducts & Biosystems Engineering © 2016 Regents of the University of Minnesota. All Rights Reserved

16

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals

Next Class

- Cooling Load Calculations
 - Principles & Considerations
 - Heat Flow Rates and Design Conditions
 - Generalized Procedures
 - Residential (simplified approach)
- Readings
 - Chapter 17 => primary focus
 - Chapter 18 => (review for procedures and tables)

BBE 4414/5414: Advanced Building Science Fundamentals

18