BBE 4414/5414

- Advanced Building Science: Fundamentals
 - Fall Semester
 - 4 Credits

- Instructor: Pat Huelman
 - 203 Kaufert Lab
 - 624-1286
 - phuelman@umn.edu

Course description

- An advanced course in the science of how houses work (and sometimes don't) with an emphasis on heat, air, and moisture flows.
- Applying building science principles (qualitative and quantitative) to resolve common energy, moisture, and air quality problems.

Learning objectives

- Upon successful completion, you should be ...
 - fully versed in key building science principles
 - familiar with contemporary energy, moisture, and indoor air quality issues in housing
 - able to solve common heat, air, and moisture problems
 - able to comfortably communicate important principles through calculations, reports, and oral presentation.

Textbooks

- Required Texts
 - ASHRAE Handbook of Fundamentals (HF)
 - High Performance Enclosures Straube (HPE)
 - Builder's Guide for Cold Climates Lstiburek *eeba.org* (BG)

- Supplemental Texts

- Building Science for Building Enclosure Straube & Burnett (BSBE)
- Water in Buildings: Architects Guide to Moisture & Mold Rose (WB)
- Building Science for a Cold Climate Hutcheon & Handegord (BSCC)
- Understanding Psychrometrics Gatley (UP)
- Principles of Heating, Ventilating, & Air Conditioning Howell, Sauer, & Coad (VHA)

•	Grading System	
	– Point breakdown	
	 assignments (5 points each) 	15
	 first mid-term 	15
	 second mid-term 	15
	 third mid-term 	15
	 lab assignments 	25
	 final project: paper & presentation 	15
	 Letter grades will based on straight percentages 	

- Course Policies
 - Review syllabus

Class Outline

- Readings
 - HF = Handbook of Fundamentals
 - HPE = High Performance Enclosures
 - BG = Builder's Guide for Cold Climates
- Assignments
 - Most assignments will be problems with some discussion
 - Final project will include paper and presentation
 - general background of the topic
 - incorporate the pertinent building science principles
 - propose a solution to the assigned problem
 - prepared presentation to the class

The House As a System

Building performance results from an interaction of

- People
 - people priorities include health & safety, comfort, and affordability
- Building
 - building priorities include durability, renewal, and disassembly
- Environment
 - environmental priorities include local, regional, and global impacts

The House As a System

It all begins with good design!

- Site planning
- House layout
- Basic structure
 - foundation type
 - ceiling/roof design
- Building enclosure
- Material selection
- Sub-systems
 - electrical/plumbing
 - heating, ventilation, air conditioning
- Finishes & Furnishings

The House As a System

It all ends with proper execution!

- Contractor
 - quality labor
 - proper equipment
 - ongoing training
 - inspections
 - quality control process
- Homeowner/Occupants
 - user-friendly controls
 - good operations and instructions
 - proper maintenance schedules and information

Wrap-Up

Residential building science is about how houses work?

• On your notecard, describe a:

A. A building performance problem that has you perplexed and you would like to solve it.

B. A building science issue that you find intriguing and would like to understand it more fully.

BBE 4414/5414: Advanced Building Science Fundamentals

• Good News

- The quality of products and equipment that we use to build houses today is superior in almost everyway compared to homes built decades ago
- Bad News
 - The number of performance problems, product failures, and builder liability is at an all time high

BBE 4414/5414: Advanced Building Science Fundamentals

- Good News
 - The overall quality of houses in Minnesota is arguably the best in the country.
- Bad News
 - We are not where we could be or should be given our climate, economy, and our environment.

• Good News

 People are really beginning to focus on performance issues in new homes.

Bad News

 We spent the past two decades in a building boom where everyone was fixated on aesthetics, "sizzle", size, and ultimately cost per square foot.

13

• Good News

 We are finally talking about renewable energy for our homes.

- Bad News
 - Our current housing stock really isn't ready for it.
 - First, they need way too much energy.
 - Second, they haven't been built to easily integrate renewable technologies.

- Good News
 - Today, we have the know-how to build far more efficient, durable, healthier, and environmentallysensitive homes.
- Bad News
 - We have been totally focused on relative and incremental improvements.
 - The planet doesn't care what percent we saved.
 - It only cares how much we use!

15

- New Demands
 - escalating consumer expectations
 - more stringent building and energy codes
 - rapid introduction of new building materials
- New Problems
 - increased moisture/building durability issues
 - heightened indoor air quality & health concerns
 - more environmental pressures on building materials
- New Strategies
 - emergence of building science
 - taking a systems approach

What is Building Science?

- Study of the physical forces that act on buildings
 - gravity, wind, etc.
 - heat transfer
 - moisture transport
 - airflows
- Application of that knowledge to provide buildings that are
 - structurally sound
 - comfortable and efficient
 - durable and long lasting
 - healthy to live in
 - friendly to our environment

What Is Total Building Performance?

- It is a deliberate integration of building enclosure, mechanical systems, and controls to provide a
 - comfortable, efficient, durable, and healthy home
- It demands a "systems approach" to the
 - dynamics of climate and occupants
 - interaction of building enclosure and mechanical systems
- It requires careful planning, teamwork and careful execution in
 - design, construction/installation, and operation

BBE 4414/5414: Advanced Building Science Fundamentals

How do We Measure Total Building Performance?

- Energy efficiency
 - Cost for space conditioning, water heating, refrigeration, lights, and appliances
- Moisture management & durability

 Life of major structural components & products
- Healthy indoor environment

 Quality of pollutant management & ventilation
- Environmental impacts
 - "Light" footprint and low long-term "costs"

Total Building Performance: When Something is Missing

Some common performance issues in today's homes

- High energy bills
- Ice dams
- Wet foundations
- Window condensation
- Structural condensation
- Water intrusion
- Indoor air quality

High Energy Bills

BBE 4414/5414: Advanced Building Science Fundamentals

Ice Dams

BBE 4414/5414: Advanced Building Science Fundamentals

Wet Foundations

BBE 4414/5414: Advanced Building Science Fundamentals

Window Condensation

BBE 4414/5414: Advanced Building Science Fundamentals

Structural Condensation

BBE 4414/5414: Advanced Building Science Fundamentals

Water Intrusion

BBE 4414/5414: Advanced Building Science Fundamentals

Indoor Air Quality

BBE 4414/5414: Advanced Building Science Fundamentals

Risky Mechanical Systems

BBE 4414/5414: Advanced Building Science Fundamentals

Can We Predict Total Building Performance?

What's the best predictor of overall building performance?

- Answer: Air flows and pressures
 - as a group unplanned, unintentional, and unmanaged airflows are the primary cause of residential performance failures
 - air flow can carry with it a great deal of heat and moisture
 - air pressures can compromise mechanical system performance

Air management is critical for comfort, energy efficiency, durability, and indoor air quality!

29

BBE 4414/5414: Advanced Building Science Fundamentals

BBE 4414/5414: Advanced Building Science Fundamentals

BBE 4414/5414: Advanced Building Science Fundamentals

BBE 4414/5414: Advanced Building Science Fundamentals

A Key to the Great Puzzle

• The greatest of these is airflow!

• Efficient, durable, and healthy homes require carefully managed airflows

– We must control both holes and pressures.

• And to some extent, until we get this right we can't move on.

High Performance Houses for Cold Climates

- The "Ten Key Components" that will ensure ...
 - Energy efficiency
 - Moisture control & durability
 - Good indoor air quality
- A formula for ...
 - How to have your cake and eat it too!!!

BBE 4414/5414: Advanced Building Science Fundamentals

Components The Ten Key Components	Energy	Moisture	IAQ
1. Full coverage optimal thermal insulation			
2. Continuous warm-side air barrier			
3. Full-coverage warm-side vapor retarder			
4. Continuous exterior-side weather barrier			
5. Energy efficient, condensation resistant windows		\bigcirc	
6. Effective ground moisture / soil gas control			
7. Low toxicity materials, finishes, and furnishings		\bigcirc	
8. Safe, efficient space heating and cooling			
9. Managed mechanical ventilation			
10. Efficient and safe appliances and lighting			

BBE 4414/5414: Advanced Building Science Fundamentals
Key Components of a Cold Climate House

Putting it All Together to Achieve Total Building Performance

Full-Coverage, Optimal Thermal Insulation

BBE 4414/5414: Advanced Building Science Fundamentals

Continuous Warm-Side Air Barrier

BBE 4414/5414: Advanced Building Science Fundamentals

BBE 4414/5414: Advanced Building Science Fundamentals

BBE 4414/5414: Advanced Building Science Fundamentals

Energy-Efficient, Condensation-Resistant Windows

BBE 4414/5414: Advanced Building Science Fundamentals

Effective Ground Moisture/Soil Gas Control

BBE 4414/5414: Advanced Building Science Fundamentals

Low-Toxic Materials, Finishes, Furnishings

- Carpets
- Underlays
- Paints
- Household cleaning products
- Cooking odors
- Combustion gases
- Textiles

- Tobacco smoke
- Molds and fungi
- Hair spray
- Disinfectants
- Deodorants
- Glues
- Wood products

BBE 4414/5414: Advanced Building Science Fundamentals

Managed Mechanical Ventilation

BBE 4414/5414: Advanced Building Science Fundamentals

Efficient, Safe Appliances and Lighting

User-Friendly Controls

- Set-back thermostat
- Dehumidistat
- Ventilation
 - more or less

Proper Operation & Maintenance

- Homeowners manual with product information and guide to operation
- Preventive maintenance checklist
- Maintenance log

BBE 4414/5414: Advanced Building Science Fundamentals

Total Building Performance: When It All Comes Together

- Well-insulated envelope
 - slab, foundation, walls, ceiling
- Highly efficient windows
- Extremely airtight
- High quality mechanicals
 - efficient, sealed combustion furnace and water heater
 - properly sized, high-efficiency air-conditioning
 - well-designed, sealed ductwork
 - dedicated and distributed mechanical ventilation system
 - high-efficiency air filtration
 - proper make-up air for exhausts
 - user-friendly controls

- Very comfortable home
- Durable & low-maintenance
- Healthy indoor environment
- Heating: \$140 350 /yr
- Cooling: \$80 200/yr
- Water heating: \$ 60 100/yr

BBE 4414/5414: Advanced Building Science Fundamentals

University of Minnesota – Bioproducts & Biosystems Engineering © 2016 Regents of the University of Minnesota. All Rights Reserved

Total Building Performance: In Summary

Always keep a holistic view of how houses work

- Must acknowledge the interaction of ...
 - structure & building envelope
 - mechanical equipment
 - occupants
- Within the context of the ...
 - climate
 - site

BBE 4414/5414: Advanced Building Science Fundamentals University of Minnesota – Bioproducts & Biosystems Engineering © 2016 Regents of the University of Minnesota. All Rights Reserved

Total Building Performance: In Summary

- Building a home or remodeling today is
 - not just parts, but practices
 - not just materials, but methods
 - not just products, but process
- The whole should be more than the sum of the parts
 - We must move from simple assembly to system integration and ultimately synergy

BBE 4414/5414: Advanced Building Science Fundamentals

Total Building Performance: In Summary

- We can and must do better!
 - Controlling airflow is critical to building performance
- Existing technology can get us there!
 - It's not about products it's all about execution
- New technologies will be important

 Must be systematic in their evaluation & application

BBE 4414/5414: Advanced Building Science Fundamentals

In Summary

Questions and Discussion

BBE 4414/5414: Advanced Building Science Fundamentals University of Minnesota – Bioproducts & Biosystems Engineering © 2016 Regents of the University of Minnesota. All Rights Reserved

Preview for Next Class

- Introduction to HAM
 - Heat flows
 - Air flows
 - Moisture flows

- Readings
 - HF: Chapter 2 => 2.1 to 2.3
 - HF: Chapter 4 => 4.1 to 4.21

- HPE: Chapter 2 & 3 (intro only)

BBE 4414/5414: Advanced Building Science Fundamentals

80

Building Science Review (for next class)

- Key Building Science Principles
 - Heat goes from _____ to _____.
 - Water vapor goes from _____ to _____.
 - Water vapor goes from _____ to _____.
 - Air in _____ air out (and vice versa).
 - Air must have a _____ and a _____ to flow.
 - _____ the rain (and the soil)
 - Most of the action is at _____ and _____.
 - Gas concentration (pollutants, water vapor, etc.) is a function of
 and _______.
- In the end -- _____, ____, and _____ flows will drive the performance of the system!

BBE 4414/5414: Advanced Building Science Fundamentals