A Brief Journey Through Building Physics / Science: Research, Standards, and Education

Dr. Georg Reichard
Associate Professor of Building Construction
NEITHER

HERE

NOR

THERE
What is Building Science / Physics?

Building Science

Building Physics (Bauphysik)
- Energy
- Heat
- Moisture
- Air
- Light
- Acoustic
- Fire Safety

Building Technologies (Gebäudetechnik)
- Electrical
- Lighting
- Mechanical
- Heating
- Cooling
- Ventilation
- Water

Environment (Umwelt)
- Climate
- Biology
- Hygiene

ASTM/NIBS Workshop - Toronto, April 6, 2014

A Brief History of Building Science Research, Standards, and Education in Central Europe
ASTM/NIBS Workshop - Toronto, April 6, 2014

2014 © Myers-Lawson School of Construction – Virginia Tech

A Brief History of Building Science Research, Standards, and Education in Central Europe
Shelter from …

- Storm
- Temperatures
- Enemies
 - Animals
 - Humans
 - …
Building Physics in History

- **Vitruvius – Roman Master Builder (33 B.C.)**
 - De Architektura libri decem (10 books about architecture)
 - *Book V*: Acoustic design of theaters
 - *Book VI*: Climatic control and design of private buildings

- **Middle Ages**
 - Urbanization required double walls as fire walls for safety zoning
 - Improved acoustics (noise protection) between buildings

- **Research**
 - 18th century: Fourier (Mathematics, Physics)
 - 19th century: Laplace, Joule, Helmholtz (Energy)
Building Physics in History

- **G.A. Breymann, Baurat**
 - Professor an der Königlich Polytechnischen Schule in Stuttgart.
 - Deals with moisture and temperature control in building enclosures

- **Dr.-Ing. Heinrich Gröber**
 - "Einführung in die Lehre von der Wärmeübertragung“, 1926 (Introduction to thermal transfer in materials)

- **J.S. Cammerer**
 - "Gesamt-Wärmeverlust von Wärmespeichern", 1925 (Total Heat Loss of Thermal Capacitors)
 - "Hilfstafel zur Berechnung des Wärmeschutzes im Bauwesen", 1925 (Tables for Calculating Thermal Resistance in Building Construction)
 - „Der Wärme- und Kälteschutz in der Industrie“ (Springer, 1928)
 - Table 12: Impact of humidity ratio on thermal conductivity in building materials of walls
 - „Tabellarium aller wichtigen Größen für Wärme-, Kälte- und Schallschutz“ (1936) (Table of important properties for thermal and noise protection)
“Reflex Patterns” in Addressing Issues

Europe – Government Fix

- Design and Construction Progress
- Building Issues and Failures
- Call for Standard Development
- Implementation in National Building Codes

United States – Trade Fix

- Building Issues and Failures
- Risk = $$$
- Involvement of Trades, Lobbies
- Litigation, Lawsuits, Class Action, ...
- Call for Standard Development
- Implementation in National Building Codes

ASTM/NIBS Workshop - Toronto, April 6, 2014

A Brief History of Building Science Research, Standards, and Education in Central Europe
The 50ies – Emerging Standards

- **Rain/Storm Protection**

- **Minimum Thermal Insulation**
 - 1952: 1st Edition of DIN 4108
 - DIN 4108-1: Wärmeschutz im Hochbau; (Thermal insulation)
 - DIN 4108-2: Mindestanforderungen (Thermal performance requirements)
 - Only walls and roof; windows or doors were not covered
 - 1959: 1st Edition of ON B 8110

- **Thermal Capacity**
 - Intermittent heating
 - No central heating → heating of selected rooms
The 60ies – Emerging Technologies

- **First Problems with Interstitial Condensation**
 - More Timber-framed Construction
 - Emerging Flat roofs
 - DIN 4108-3: Klimabedingter Feuchteschutz; Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung (Moisture control in buildings; requirements and calculation model)

- **New Heating Systems**
 - Emerging central heating

- **Temperature Control**
 - Through (over-)ventilation → no thermostats
 - Few mold problems (mostly too dry indoor air)

- **Term “Bauphysik” emerges**

- **Austria: Individual State Building Codes**
 - Now require minimum levels of thermal and acoustic insulation
The 70ies – The First Energy Crises

□ Energy Crises

 Leads to Increased Energy Cost
 Improved thermal performance requirements
 ➢ Revision of DIN 4108-2: (Thermal performance requirements)
 ➢ 1. Wärmeschutzverordnung 1977
 Airtightness of windows
 ➢ DIN 4108-7: Luftdichtheit von Gebäuden
 (Air tightness of buildings)
 Thermostat valves for temperature control

□ Mold Problems

 Lower air change rates
 Despite insulation efforts still comparatively low surface temperatures

ASTM/NIBS Workshop - Toronto, April 6, 2014

A Brief History of Building Science Research, Standards, and Education in Central Europe
The 80ies – Emerging Architecture

- **Increased Thermal Performance Requirements**
 - 2. Wärmeschutzverordnung 1984

- **New Façade Systems**
 - Larger window/wall ratios with improved glazing performance
 - Summer over-heating control (architectural, mechanical)
 - Expansion of DIN 4108-2: Section “Sommerlicher Wärmeschutz”

- **Alternative Energy Systems**
 - Solar thermal systems
 - Passive solar systems

- **Urbanization**
 - Acoustic performance requirements

ASTM/NIBS Workshop - Toronto, April 6, 2014
The 90ies – Environmental Issues

☐ Increased Thermal Performance Requirements
 ▪ 3. Wärmeschutzverordnung 1995

☐ Health Issues
 ▪ Building product related (asbestos, formaldehyde, …)

☐ Discussion on Ecological Impact
 ▪ Building Products
 ▪ Building Developments

☐ EU Opens Market
 ▪ EU wide product directives
The 21st Century – A Shift in Scale

- **Microbial Issues**
 - From exterior environment
 - Odor issues

- **Energy Efficiency of Industrial Facilities**
 - Integration with energy efficient manufacturing
 - Facility development integration with transportation infrastructure

- **Building Physics in Mobile “Facilities”**
 - Airplane design and construction
 - Automobile designs and construction

- **Sustainability (“Nachhaltigkeit”)**
Recap of (European) Development

Why did it take two decades for building physics to emerge as a recognized profession?

- Missing of theoretical fundamentals and methods
 - Academic research
- Missing best practice and application in construction
 - Development of standards
- Knowledge deficit in practice
 - Continuing education
- Missing professional engineers for building physics
 - New academic programs and professionals
- Missing governmental requirements
 - Code requirements implementing existing standards
 - Incentives driving better building practice
 (e.g. subsidized loans for “correct” or better building practice)
- Missing advanced building products, test instruments and protocols
Common Educational Program Layout

Civil Engineering

- Geotechnics + Water
- Transportation + Environment
- Construction
- Structural
- Building Construction
- Construction Management

Architecture

- Design + Practice
- Urban Affairs + Planning
- History and Theory
- Construction Technologies
- Building Technologies
- Visualization and Practice
- City Planning
- Landscape Planning
- Development

ASTM/NIBS Workshop - Toronto, April 6, 2014

A Brief History of Building Science Research, Standards, and Education in Central Europe
Degree Programs with Building Physics Focus

Interactive map with tagged departments and website URLs.

ASTM/NIBS Workshop - Toronto, April 6, 2014
Close Up View – Graz University of Technology

☐ Civil Engineering
 ▪ Department of Building Construction
 ➢ Building Construction Principles (2)
 ➢ Building Physics (3)
 ▪ Building Construction Laboratory
 ➢ Building Physics Research
 ➢ Accreditation Laboratory

☐ Architecture
 ▪ Department of Buildings & Energy
 ➢ Building Technologies (4)
 ➢ Building Physics (3)
 ➢ Architecture and Energy (4)

☐ Mechanical Engineering
 ▪ Master Program Energy Technologies
 ➢ HVAC Technologies (3)
 ➢ Energy Technologies (4)
 ➢ Energy Measurements and Technologies (4)
Performance Tools

- Thermal Performance
 - U-Value
 - Thermal Lag Times

- Hygrothermal Performance
 - Condensation Risk
 - Mold Mitigation
 - Durability

- Acoustic Performance
 - Transmission Loss

BEST-Lab Research Group, Sept 2012

Building Science Research / Myers-Lawson School
Interstitielle Konденstation

Kondensationsberechnung

Kondensatmengen G_{K_i} nach ÖNORM B1100-2 (Punkt 5.2.5)

<table>
<thead>
<tr>
<th>Menge</th>
<th>G_{K_i}</th>
<th>$G_{K_{E}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,19</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,19</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0,19</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0,18</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Bauphysikalische Beurteilung des Bauteilbereichs:

Die anfallende KONDENSATMENGE KANN in der Verdunstungsperiode weder VOLLSTÄNDIG AUSTROCKEN, sodaß keine fortschreitende Feuchteanhäufung im Bauteil auftritt ($G_{K} < G_{K_{E}}$).

---- Beginn Schicht 1: Innenputz

Berechnung starten
Educational Sites with “Building Science” (site:.edu)
http://www.maptive.com/ver3/building-science
Close Up View – Virginia Tech

- Architecture
 - Architecture + Design
 - Building Construction Principles (2)
 - Building Physics (3)
 - Building Construction
 - Building Physics
 - Applied Building Sciences
 - Building Science Modeling & Simulation (Grad)
 - Research & Demonstration Facilities
 - Building Science Research

- Civil Engineering
 - ...

- Mechanical Engineering
 - HVAC Technologies (3)

ASTM/NIBS Workshop - Toronto, April 6, 2014

A Brief History of Building Science Research, Standards, and Education in Central Europe
ASTM/NIBS Workshop - Toronto, April 6, 2014

Co-taught with BC 5314
Applied Building Sciences
Where are we today on either side?

Neither Here Nor There

☐ European nations may be closer, but still not “There”
 - Highly fragmented education system
 - Still territorial academic silos

☐ North American institutions have left the “Here”
 - Quite a way ahead to get “There”
 - Use existing roads – (internet) highway?
 - Potential to catch up by building on existing knowledge and practice
 - Learn from mistakes (still existing) in Europe
 - Potential to surpass European peer institutions by addressing building science through integrated program models
The New Master-Builder?

Building Science Professional

ASTM/NIBS Workshop - Toronto, April 6, 2014

A Brief History of Building Science Research, Standards, and Education in Central Europe